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1 Introduction

The primary objective of time series analysis is to develop mathematical models that provide descriptions
for sample data. In order to provide a statistical setting for describing the character of data that seem-
ingly fluctuate in a random fashion over time, we assume a time series can be defined as a collection of
random variables indexed according to the order they are obtained in time. Most commonly, a time series
is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time
data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value
of the Dow Jones Industrial Average.

We may consider a time series as a sequence of random variables, x1, x2, x3... where the random variable
x1denotes the value taken by the series at the first time point, the variable x2 denotes the value for the
second time period and so on.

In general, a collection of random variables, xt, indexed by t is referred to as a stochastic process. We
will typically consider t to be discrete and vary over the integers t = 0,±1,±2....

The study of time series is concerned with time correlation structures. It has diverse applications from
oceanography to finance. Time series are used in statistics, signal processing, pattern recognition, econo-
metrics, mathematical finance,weather forecasting, earthquake prediction, control engineering, astron-
omy, communications engineering, and largely in any domain of applied science and engineering which
involves temporal measurements.

1



2 Methods

Time series analysis accounts for the fact that data points taken over time may have an internal structure
(such as autocorrelation, trend or seasonal variation) that should be accounted for. Methods for time
series analysis may be divided into two classes: frequency-domain methods and time-domain methods.
Frequency domain : include spectral analysis and wavelet analysis;
Time domain : include auto-correlation and cross-correlation analysis.

The time domain approach is generally motivated by the presumption that correlation between adjacent
points in time is best explained in terms of a dependence of the current value on past values. The time
domain approach focuses on modeling some future value of a time series as a parametric function of the
current and past values. In this scenario, we begin with linear regressions of the present value of a time
series on its own past values and on the past values of other series. This modeling leads one to use the
results of the time domain approach as a forecasting tool and is particularly popular with economists for
this reason.

One approach, advocated in the landmark work of Box and Jenkins (1970), develops a systematic
class of models called autoregressive integrated moving average (ARIMA) models to handle timecorre-
lated modeling and forecasting. The approach includes a provision for treating more than one input
series through multivariate ARIMA.

The defining feature of these models is that they are multiplicative models, meaning that the observed
data are assumed to result from products of factors involving differential or difference equation operators
responding to a white noise input.

3 Classical Regression (In Time Series context)

Linear regression in the time series context can be done by assuming some output or time dependent
series, say xt for t = 1, 2 . . . n which are being influenced by a collection of possible inputs or independent
series, say zt1, zt2 . . . ztq. We express this relation through the linear regression model

xt = β1zt1 + β2zt2 + ....βqztq + wt (1)

where β1, β2....βq are unknown fixed regression coefficients and wt is the is a random error or noise
process consisting of independent and identically distributed (iid) normal variables with mean zero and
variance σ2

w.

A time series plot of the JohnsonJohnson Stock price and the estimated trend line obtained via simple
linear regression is as below.

It is apparent that the estimated trend line obtained via simple linear regression does not quite capture
the trend of the data and better models will be needed.

4 Preliminaries

4.1 White noise and Moving average

White noise describes each element in a series is a random draw from a population of mean 0 and
constant variance. A moving-average model is conceptually a linear regression of the current value of the
series against current and previous (unobserved) white noise error terms or random shocks. The random
shocks at each point are assumed to be mutually independent and to come from the same distribution,
typically a normal distribution, with location at zero and constant scale.

A simple kind of generated series might be a collection of uncorrelated random variables, εt with mean
0 and finite variance σ2. The time series generated from uncorrelated variables is used as a model for
noise in some applications, where it is called white noise.
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A particularly useful white noise series is Gaussian white noise, wherein the εt are independent normal
random variables, with mean 0 and variance σ2. The below figure shows on the upper panel a collection
of 500 such random variables, with σ2

ε = 1. Replacing the white noise by a moving average that smooths
the series results in the bottom figure. This can be done by replacing εt by an average of its current
value and its immediate neighbours in the past and future ie,

vt =
1

5
(εt−2 + εt−1 + εt + εt+1 + εt+2)

These are plotted in R using the following commands.

w = rnorm(500 ,0 , 1 ) # 500 samples t h a t f o l l o w N(0 ,1)
v = f i l t e r (w, s i d e s =2, rep (1/5 , 5 ) ) # computing moving average . As shown in v t .
plot . ts (w, main=” white no i s e ” )
plot . ts (v , yl im=c (−5 ,5) , main=”moving average ” )

4.2 Stationary Series.

A series is stationary when the mean and variance do not change over time and the process does not
have trends. Modelling a time series (ARMA) model requires stationarity. Also for an Auto Correlation
function (ACF) to make sense, the series must be a weakly stationary series. This means that the auto-
correlation for any particular lag is the same regardless of where we are in time.

A series is said to be weakly stationary if it satisfies the following conditions;

• The mean E(xt) is same for all t
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Figure 1:

• The variance of (xt) is same for all t

• The covariance and the correlation between xt and xt−h is the same for all t.

Differencing: One of the ways we can address the issue of stationariness us by differencing. It involves
two steps.

• Remove unequal variances. We do this using log of the series.

• We need to address the trend component. We do this by taking difference of the series.

• Differenced variable: ∆xt = xt − xt−1

This can be done using diff(log(JohnsonJohnson)) in R. So the Johnson Johnson stock which was a non
stationary series can be transformed as follows.
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4.3 Augmented DickeyFuller test

Augmented DickeyFuller test (ADF) tests the null hypothesis of whether a unit root is present in a time
series sample. The alternative hypothesis is usually stationarity or trend-stationarity.

The testing procedure for the ADF test is applied to the AR(1) model;

xt = ρxt−1 + et (2)

xt : is the variable of interest

ρ : coefficient on a time trend

et : error term

A unit root is present if ρ = 1. The model would be non-stationary in this case. We rewrite Equation(2)
as,

xt = ρxt−1 + εt

xt − xt−1 = ρxt−1 − xt−1 + εt

δxt = (ρ− 1)yt−1 + εt

δxt = γyt−1 + εt

If γ = 0 then we have ρ = 1, then it means xt = xt−1 + εt. Which is nothing but a random walk. So we
can say xt is not stationary. We therefore obtain the below hypothesis.

Estimation: We estimate if null-hypothesis is not rejected, then xt is not stationary.

Testing ADF on our data JohnsonJohnson, in R, we have the following result.

Note: A small p value (≤ 0.05) indicates strong evidence against the null hypothesis, so you reject the
null hypothesis.

4.4 Autocorrelation function (ACF)

The coefficient of correlation between two values in a time series is called the autocorrelation function
(ACF) For example the ACF for a time series xt is given by:

Corr(xt, xt−k)

This value of k is the time gap being considered and is called the lag. A lag 1 autocorrelation (i.e., k = 1
in the above) is the correlation between values that are one time period apart. More generally, a lag k
autocorrelation is the correlation between values that are k time periods apart. The ACF is a way to
measure the linear relationship between an observation at time t and the observations at previous times.
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If we assume an AR(k) model, then we may wish to only measure the association between xt and xt−k
and filter out the linear influence of the random variables that lie in between (ie. xt−1, xt−2......xt−k).

Theoretically, the autocorrelation between xt and xt−k is,

ACF (k) =
Covariance(xt, xt−k)

σxt
.σxt−k

=
Covariance(xt, xt−k)

Variance(xt)

We plot the ACF of our Johnson and Johnson stock and see the difference between the stationary and
non stationary series.

Figure 2: ACF of a non-stationary vs stationary series

The ACF is decaying, or decreasing, very slowly, and remains well above the significance range (dotted
blue lines). This is indicative of a non-stationary series. Refer Figure 2

On the other hand ACF of a stationary series shows exponential decay. This is indicative of a stationary
series.

4.5 Partial Autocorrelation function (PACF)

PACF is a simple correlation between xt and xt−k, minus the part explained by the intervening lags.

ρk = Corr(xt − E(xt|xt−1....xt−k+1), xt−k)

where;
E(xt|xt−1....xt−k+1) is the minimum squared error predictor.

The 2nd order (lag) partial autocorrelation is;

Covariance(xt, xt−2|xt−1)√
Variance(xt|xt−1)Variance(xt−2|xt−1)

(3)

We visualize using this PACF Plot. The plot indicates that the PACF cuts off past the order of the
model.

5 ARIMA models

5.1 Introduction

Linear models where built based on classical regression theory for exploiting the associations indicated
by large values of the ACF. The time domain, or regression, are appropriate when we are dealing with
possibly nonstationary, shorter time series. In addition, if the emphasis is on forecasting future values,
then the problem is easily treated as a regression problem.
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The introduction of correlation as a phenomenon that may be generated through lagged linear rela-
tions leads to proposing the autoregressive (AR) and autoregressive moving average (ARMA) mod-
els. Adding nonstationary models to the mix leads to the autoregressive integrated moving average
(ARIMA).

In the time series case, it is desirable to allow the dependent variable to be influenced by the past values
and possibly by its own past values. If the present can be modelled in terms of only the past values of
the independent inputs, we have the prospect that forecasting will be possible.

5.2 First-order Autoregression Model (AR(1))

A time series is a sequence of measurements of the same variable(s) made over time. Usually the
measurements are made at evenly spaced times - for example, monthly or yearly. Let us first consider
the problem in which we have a x-variable measured as a time series. As an example, we might have x
a measure of global temperature, with measurements observed each year. To emphasize that we have
measured values over time, we use ”t” as a subscript, i.e xt means x measured in time period t.

In this model the value of x at time t is a linear function of the value of x at time t− 1

xt = β0 + β1xt−1 + εt

Assumptions:

• εt
iid∼ N(0, σ2) ie errors are independently distributed with a normal distribution that has mean 0

and constant variance.

• Properties of the errors εt are independent of xt.

• The series x1, x2, ... is (weakly) stationary.

The order of an autoregression is the number of immediately preceding values in the series that are used
to predict the value at the present time. So, the preceding model is a first-order autoregression, written
as AR(1).

If we want to predict x this year xt using measurements of global temperature in the previous two years
(xt−1, xt−2), then the autoregressive model for doing so would be:

xt = β0 + β1xt−1 + β2xt−2 + εt
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This model is a second-order autoregression, written as AR(2), since the value at time t is predicted
from the values at times t− 1 and t− 2.

An autoregressive model of order p, AR(p), is of the form;

xt = β0 + β1xt−1 + β2xt−2 + ....βpxt−p + εt (4)

The mean of xt is zero. If the mean µ of xt is not zero, we replace xt by xt − µ in above and write as;

xt = α+ β1xt−1 + β2xt−2 + ....βpxt−p + εt (5)

where α = µ(1− β1.....− βp).

We note that this equation is similar to the regression model of (1) and hence the term auto (or self)
regression.

Example 5.1. Sample path of an AR(1) process
Lets see a time plot of two AR(1) processes. One with β = 0.9 and another with β = −0.9. The first case
shows observations close together in time are positively correlated with each other. It means observations
at contiguous time points will tend to be close in value to each other; this fact shows up a very smooth
sample path for xt.
For the second case β = −0.9 the result means that observations at contiguous time points are negatively
correlated but observations two time points apart are positively correlated. This shows up in the figure
where for example, if an observation xt is positive the next observation xt+1 is typically negative and
the next xt+2 is positive. Thus, in this case, the sample path is very choppy.
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Figure 3: ACF for AR(1)

ACF for AR(1) For an AR(1) model, the ACF is ACF(h) = ρk = βk. We say this function tails off
as in Figure 5.2.

We plot this using the below R codes.

ar <− arima . sim (model=l i s t ( ar =.8) , n=100) # Simula t ing an AR p roce ss .
plot ( ar )

#P l o t t i n g ACF of an AR with c o e f f i c i e n t 0 .8
ac f ( ar , 2 0 , xlim=c ( 1 , 20 ) , main=”ACF of AR(1) with c o e f f i c i e n t 0 .8 ” )

PACF for AR(1) Now we look at PACF for AR(1) process. Refer Figure 4: PACF for AR(1). As we
see, the first spike is the correlation between xt and xt−1 which is 0.8.. What is the correlation between
xt and xt−2 ? Nothing. Since everything comes from the first lag. Once we come from the first lag there
are no more residual correlations. That is why we say it cuts off..
If you have an AR(2) process, then you will have 2 lags and then everything else will cut off. Ref 5.2

pac f ( ar , 2 0 , ylim=c ( − . 2 ,1) , main=”PACF f o r AR(1) with c o e f f i e i e n t 0 .8 ” )

5.3 Moving Average (MA) model

A moving average term in a time series model is a past error (multiplied by a coefficient). In time series
analysis, the moving-average (MA) model is a common approach for modeling univariate time series.
The moving-average model specifies that the output variable depends linearly on the current and various
past values of a stochastic (imperfectly predictable) term. Together with the autoregressive (AR) model,
the moving-average model is a special case and key component of the more general ARMA and ARIMA
models of time series, which have a more complicated stochastic structure.

A first order moving average model, denoted by MA(1) is given by;

xt = µ+ εt + θ1εt−1

and the qth order moving average model MA(q) is given by;
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Figure 4: PACF for AR(1)

xt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where;
µ is the mean of the series.
θ1, θ2....θq are the parameters of the model
value q is the order of the MA model.

Moving average (MA) models account for the possibility of a relationship between a variable and the
residuals from previous periods. Notice that here there are no xt−1, xt−1... terms. MA model is all about
the residuals unlike the AR which is about the lags of the variable itself.

Example 5.2. Sample path of an MA(1) process
When for e.g θ = 0.7, xt and xt−1 are positively correlated and when θ = −0.7, they are negatively
correlated. Refer Figure 5: MA(1) path. The plot shows that the series is smoother when θ = 0.7.

We use this code format to drive the results in R.

plot ( arima . sim ( l i s t ( order=c ( 0 , 0 , 1 ) , ma=.7) , n=50) ,
ylab=”x” , main=(expression (MA(1)˜˜˜ theta ==+.7)))

plot ( arima . sim ( l i s t ( order=c ( 0 , 0 , 1 ) , ma=−.7) , n=50) ,
ylab=”x” , main=(expression (MA(1)˜˜˜ theta ==−.7)))

5.4 ARMA Model

We may have to use a relatively long AR or MA model to capture the complex structure of time
series. This sometimes is undesirable as we usually want to fit stingy models i.e a model with relatively
few unknown parameters. To achieve this goal we combine the AR and MA parts to form a ARMA
(Autoregressive Moving Average model.)

Definition: A time series xt : t = 0,±1,±2, .. is ARMA(p,q) if it is stationary and

xt = φ1xt−1 + ....φpxt−p + wt + θ1wt−1 + θqwt−q (6)
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Figure 5: MA(1) path
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The parameters p and q are called the autoregressive and the moving average orders, respectively. If xt
has a nonzero mean µ, we set α = µ(1− φ1....− φp) and write the model as ;

xt = α+ φ1xt−1 + ....φpxt−p + wt + θ1wt−1 + θqwt−q

As previously noted, when q = 0, the model is called an autoregressive model of order p, AR(p), and
when p = 0, the model is called a moving average model of order q, MA(q).

The ARMA(p,q) model in (4) can then be written in concise form as,

φ(B)xt = θ(B)wt (7)
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