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Introduction

Time Series

A collection of random variables indexed according to the order they
are obtained in time.

Takes into account the internal structure of data points, such as
autocorrelation, trend or seasonal variations

Modeling relationships using data collected over time. For eg
Stock Price, Index Closings, GDP etc.
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Introduction

Motivation

In the context of;

Statistics, econometrics, quantitative finance and geophysics the
primary goal of time series analysis is forecasting.

Signal processing, it is used for signal detection and estimation,

Data mining, pattern recognition and machine learning time series
analysis can be used for clustering and classification.
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Introduction

Methods
Methods for time series analysis may be divided into two classes:
frequency-domain methods and time-domain methods.

Frequency domain: include spectral analysis and wavelet analysis;

Time domain: include auto-correlation and cross-correlation analysis.

Models in time domain:
Three broad model classes of practical importance are the autoregressive
(AR) models, the moving average (MA) models. These two classes depend
linearly on previous data points.

Combinations of these ideas produce autoregressive moving average (ARMA)

and autoregressive integrated moving average (ARIMA) models.
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Introduction
Nature of Time series data

We will try to handle some ts data in R using the inbilt dataset in R
(JohnsonJohnson).

data(JohnsonJohnson)

plot(JohnsonJohnson,type=”l”)
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Classical regression in time series context

Linear regression in the time series context can be done by assuming
some output or time dependent series, say xt for t = 1, 2 . . . n which are
being influenced by a collection of possible inputs or independent
series, say zt1, zt2 . . . ztq.
Expressed as,

xt = α+ β1zt1 + β2zt2 + ....βqztq + wt (1)

where,
β1, β2....βq are the regression coefficients
wt is the is the random error.
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Classical regression in time series context
A time series plot of the JohnsonJohnson Stock price and the
estimated trend line obtained via simple linear regression.
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Preliminaries
White noise and Moving averages

In discrete time, white noise is a discrete signal whose samples are
regarded as a sequence of serially uncorrelated random variables, wt ,
with mean 0 and variance σ2.
Example: A single realization of white noise is a random shock.
A white noise process is one which has no correlation between its values
at different times.

plot.ts(rnorm(200),col=”blue”,main=”White noise”) in R.

Figure:
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Preliminaries
White noise and Moving averages

The white noise wt can be replaced by a moving average that smooths
the series.
Consider wt as a average of its current value and its immediate
neighbours.

vt =
1

3
(wt−1 + wt + wt+1) (2)
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Preliminaries
White noise and Moving averages

Gaussian white noise series and three-point moving average of the Gaussian
white noise series could like this.

Figure: Moving average smooth series
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Preliminaries
White noise and Moving averages

Equation (3) can be plotted in R using the filter function in R.
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Preliminaries
Stationary Series

Modelling a time series (ARMA) model requires stationarity.

Weak Stationary

A series xt is said to be (weakly) stationary if it satisfies the following
properties:

The mean E(xt) is same for all t

The variance of (xt) is same for all t

The covariance and the correlation between xt and xt−h is the
same for all t.
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Preliminaries
Stationary Series

Figure: Stationary vs Non stationaryVenkatramani Rajgopal Time Series Analysis 3 Nov 2016 14 / 34



Preliminaries
Stationary Series

Addressing non-stationary series.

Remove unequal variances. We do this using log of the series.

We need to address the trend component. We do this by taking
difference of the series.

Differenced variable: ∆xt = xt − xt−1

This can be done using diff(log(JohnsonJohnson)) in R.
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Preliminaries
Augmented Dickey–Fuller test

Augmented Dickey–Fuller test (ADF) tests the null hypothesis of whether a
unit root is present in a time series sample. The alternative hypothesis is
usually stationarity or trend-stationarity.
The testing procedure for the ADF test is applied to the AR(1) model;

xt = ρxt−1 + et (3)

xt : is the variable of interest

ρ : coefficient on a time trend

et : error term

A unit root is present if ρ = 1. The model would be non-stationary in this
case.

Venkatramani Rajgopal Time Series Analysis 3 Nov 2016 16 / 34



Preliminaries
Augmented Dickey–Fuller test

Estimation : We estimate if null-hypothesis is not rejected, then xt is
not stationary.
Testing ADF on our data JohnsonJohnson, in R, we have the following
result.
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Preliminaries
Autocorrelation function (ACF)

The ACF is a way to measure the linear relationship between an
observation at time t and the observations at previous times.

xt denote the value of a time series at time t.

The ACF of the series gives correlations between xt and xt−k for
k = 1, 2, 3, etc.

Theoretically, the autocorrelation between xt and xt−k is,

ACF (k) =
Covariance(xt, xt−k)

σxt .σxt−k
=

Covariance(xt, xt−k)

Variance(xt)
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Preliminaries
Autocorrelation function (ACF)

Figure: ACF of a non-stationary vs stationary series

The above ACF is “decaying”, or decreasing, very slowly, and remains well
above the significance range (dotted blue lines). This is indicative of a
non-stationary series.
On the other hand ACF of a stationary series shows exponential decay. This
is indicative of a stationary series.
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Preliminaries
Partial - Autocorrelation function (PACF)

PACF is a simple correlation between xt and xt−k, minus the part
explained by the intervening lags.

ρk = Corr(xt − E(xt|xt−1....xt−k+1), xt−k)

where;
E(xt|xt−1....xt−k+1) is the minimum squared error predictor.
The 2nd order (lag) partial autocorrelation is;

Covariance(xt, xt−2|xt−1)√
Variance(xt|xt−1)Variance(xt−2|xt−1)

(4)
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Preliminaries
Partial - Autocorrelation function (PACF)

PACF Plots

Venkatramani Rajgopal Time Series Analysis 3 Nov 2016 21 / 34



First-order Autoregression Model (AR(1))

AR(1) model is a linear model that predicts the present value of a time
series using the immediately prior value in time. In this model, the
value of x at time t is a linear function of the value of x at time t–1.
Represented as;

xt = β0 + β1xt−1 + εt

Assumptions:

εt
iid∼ N(0, σ2) i.e errors are independently distributed with a normal

distribution that has mean 0 and constant variance.
An autoregressive model of order p, AR(p), is of the form;

xt = β0 + β1xt−1 + β2xt−2 + ....βpxt−p + εt (5)
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First-order Autoregression Model (AR(1))

The mean of xt is zero. If the mean µ of xt is not zero, we replace xt
by xt−µ in Equation(4) and write as;

xt = α+ β1xt−1 + β2xt−2 + ....βpxt−p + εt (6)

where α = µ(1− β1.....− βp).
We note that this equation is similar to the regression model of (1) and
hence the term auto (or self) regression.

Venkatramani Rajgopal Time Series Analysis 3 Nov 2016 23 / 34



First-order Autoregression Model (AR(1))
Sample path of an AR(1) process
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First-order Autoregression Model (AR(1))
Sample path of an AR(1) process

Plotted using the below R codes.
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First-order Autoregression Model (AR(1))
ACF for AR(1)

For an AR(1) model, the ACF is ACF(k) = ρk = βk.
We say this function tails off.
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First-order Autoregression Model (AR(1))
PACF for AR(1)
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Moving Average (MA) model

The moving-average model specifies that the output variable depends
linearly on the current and various past values.
A first order moving average model, denoted by MA(1) is given by;

xt = µ+ εt + θ1εt−1

and the qth order moving average model with q lags, MA(q) is given
by;

xt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where there are q lags in the moving average and θ1, θ2....θq are
parameters.
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Moving Average (MA1) process
When for e.g θ = 0.7, xt and xt−1 are positively correlated and when
θ = −0.7, they are negatively correlated.

The above plot shows that the series is smoother when θ = 0.7.
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Moving Average (MA1) process

R code.
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ARMA Model

Autoregressive moving average (ARMA) models combine both p
autoregressive terms and q moving average terms, also called
ARMA(p,q) given by,

xt = β1xt−1 + ....+ βpxt−p + εt + θ1εt−1 + ....+ θqεt−q (7)
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Fitting the model (Summary)

Three items should be considered to determine a first guess at an
ARIMA model: a time series plot of the data, the ACF, and the PACF.

Plot the data. Identify any unusual observations.

If the data are non-stationary: take first differences of the data
until the data are stationary.

For data with a curved upward trend accompanied by increasing
variance, consider transforming the series with either a logarithm
or a square root.

Examine the ACF/PACF: Is an AR(p) or MA(q) model
appropriate?
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Thank You for your attention.
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