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1 Introduction

This is a epilogue to Bertrand’s postulate on Binomial Coefficients.

Bertrands postulate.
For every n ≥ 1 there is some prime number p with n < p ≤ 2n.

In 1892 J.Sylvester strengthened Bertrands postulate in the following way;
✞

✝

☎

✆
If n ≥ 2k, then at least one of the numbers n, n− 1, ....n− k + 1 has a prime divisor p greater than k.

Note that for n = 2k we obtain precisely Bertrands postulate. In 1934, Erdos gave a elementary Book
Proof of Sylvesters result, running along the lines of his proof of Bertrands postulate.

He mentioned an equivalent way of stating Sylvesters theorem:
The binomial coefficient,

(

n

k

)

=
n(n− 1)...(n− k + 1)

k!
(n ≥ 2k)

always has a prime factor p > k.

With this observation we analyse when is
(

n
k

)

equal to power ml.
We see that there are infinitely many solutions for k = l = 2, i.e., there are infinitely many solutions of
(

n
2

)

= m2.

We observe that if
(

n
2

)

is a square, then so is
(

(2n−1)2

2

)

. To see this, let n(n−1) = 2m2. So by substitution
we get

(2n− 1)2((2n− 1)2 − 1) = (2n− 1)24n(n− 1) = 2(2m(2n− 1))2.

So we have:
(

(2n− 1)2

2

)

= (2m(2n− 1))2

Beginning with
(

9
2

)

= 62 we thus obtain many solutions. The next one is
(

289
2

)

= 2042. [by substituting

n=9 we have (2n− 1)2 = (2 ∗ 9− 1)2 = 289 ]
For k = 3 it is known that

(

n
3

)

= m2 has a unique solution with n = 50,m = 140. But for k ≥ 4 and
l ≥ 2 we do not have any further solutions. Erdos proved this by the following argument:
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2 Theorem

The Equation
(

n
k

)

=ml has no integer solutions with l ≥ 2 and 4 ≤ k ≤ (n− 4).

Proof. We may assume n ≥ 2k since
(

n
k

)

=
(

n
n−k

)

. If the theorem is false then it follows that
(

n
k

)

= ml

This proof by contradiction proceeds in the below four steps.

2.1 Step 1

By Sylvester’s theorem,
(

n
k

)

has a prime factor p > k of . We have that
(

n
k

)

= ml which can be written
as

n(n− 1).....(n− k + 1)

k(k − 1).....1
= ml

is divisible by p. Since p > k,then p can’t be a divisor of the denominator k(k − 1).....1. Which implies
that the numerator n(n− 1).....(n− k + 1) is indeed divisible by p. So we have

n(n− 1).....(n− k + 1)

k(k − 1).....1
= ml p ⇒

n(n− 1).....(n− k + 1)

k(k − 1).....1
= ml pl

Since p is not a divisor of k(k − 1).....1 then we can write:

n(n− 1).....(n− k + 1) pl

Only one of n− i pl, since l ≥ 2 we make the following observation

n ≥ pl > kl ≥ k2 (1)

2.2 Step 2

We rewrite the (n− j) factors of the numerator in the form:

(n− j) = ajm
l
j (2)

Where 0 ≤ j ≤ k − 1 and aj is not divisible by any l-th power. By (Step 1) we know that aj has only
prime divisors less than or equal to k. We want to show ai 6= aj when i 6= j. We assume the opposite,
that there exist i, j such that ai = aj and i 6= j, we can assume i < j (otherwise j > i) .Then we have

i < j =⇒ n− i > n− j

=⇒ aim
l
i > ajm

l
j

=⇒ ml
i > ml

j =⇒ mi > mj =⇒ mi ≥ mj + 1

On the other hand:

(0 ≤ i, j ≤ k− 1 and i < j) =⇒ k > j − i = (n− i)− (n− j) = aj(m
l
i −ml

j) ≥ aj((mj +1)l −ml
j) (3)

Now :

(mj + 1)l −ml
j =

l
∑

k=0

(

l

k

)

ml−k
j −ml

j = [

(

l

0

)

ml
j +

(

l

1

)

)ml−1
j + · · ·+ 1]−ml

j >

(

l

1

)

ml−1 = lml−1
j

Plugging the above inequality in (3) we conclude

k > aj((mj + 1)l −ml
j) > lajm

l−1
j (4)
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We know that l ≥ 2, so:

(l/2) ≥ 1 =⇒ (l − 1) ≥ (l/2) =⇒ ml−1
j ≥ m

l/2
j

Since j ≤ k − 1 we can also write:

aj lm
l−1
j ≥ l(ajmj)

l/2 = (n− j)1/2 ≥ (n− (k − 1))1/2

which leads to
l(ajmj)

l/2 ≥ l((n− (k − 1))1/2) (5)

.

From our assumption, n ≥ 2k =⇒ k ≤ (n/2) =⇒ n− k + 1 ≥ n− n/2 + 1 = n/2 + 1. Furthermore:

(n− (k − 1))1/2) ≥ (n/2 + 1)1/2 =⇒ l((n− (k − 1))1/2)) ≥ l((n/2 + 1)1/2) (6)

And since l ≥ 2 we have

l((n/2 + 1)1/2) > l(n/2)1/2 = (l2/2)1/2n1/2 = n1/2

Therefore we can say
l((n/2 + 1)1/2) > nl/2 (7)

Now combining equations 4, 5 , 6 and 7 we get:

k > lajm
l−1
j

≥ l(ajmj)
1/2

≥ (n− (k − 1))
1/2

≥ n1/2

which is a contradiction to n > k2, so our assumption that there exist i, j such that ai = aj and i 6= j is
wrong and therefore ai 6= aj whenever i 6= j i.e, aj ’s are all distinct.

2.3 Step 3

In this step we prove ai’s are the integers 1,2,....k in some order. Since we know that they all are distinct,
it suffices to prove that,

a0a1....ak−1 divides k!

Substituting n− j = ajm
l
j , from Equation 2, into the equation

(

n
k

)

= ml, we obtain,

n(n− 1) . . . (n− k + 1) = a0m
l
0a1m

l
1.....ak−1m

l−1
k−1

= (a0a1....ak−1)(m0m1....mk−1)
l

= k!ml

Now cancelling common factors of m0m1....mk−1 and m yields,

a0a1....ak−1u
l = k!vl (8)

where gcd(u, v) = 1. We want to show that v = 1. If v 6= 1 then it has a prime factor p ≤ k. Equation (8)
tells us that since gcd(u, v) = 1 and ul cannot be divisible by p then a0a1...ak−1 has to be divisible by p,
so p has to be less than or equal to k and therefore p appears somewhere in the product k! = k(k−1) . . . 1.

By Legendre’s Theorem we know that the exponent of p in k! is

∑

i≥1

⌊

k

pi

⌋
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Since n(n−1) . . . (n−(k−1)) = a0a1 . . . ak−1(m0m1 . . .mk−1)
l
= k!ml then p also appears in the product

n(n− 1) . . . (n− (k− 1)). Next we estimate the exponent of p in this product. Let i > 0 and let’s assume
that there are s multiples b1 < b2 < · · · < bs of pi among n, (n− 1), . . . , (n− (k− 1)) where 0 ≤ i ≤ k− 1
and 0 ≤ s ≤ k, i.e bs = s · pi, b1 = 1 · pi. Furthermore we have

bs = b1 + bs − b1

= b1 + pi · s− pi

= b1 + (s− 1)pi

Since b1 < b2 < · · · < bs are multiples of pi among n, (n− 1), . . . , (n− (k − 1)) we have

(s− 1)pi = bs − b1 ≤ n− (n− k + 1) = k − 1 =⇒ s =
k − 1

pi
+ 1

which implies

s ≤

⌊

k − 1

pi

⌋

+ 1 ≤

⌊

k

pi

⌋

+ 1 (9)

So for each i the number of multiples of pi among n, ...n − k + 1 and hence among the a′js is bounded

by
⌊

k
pi

⌋

+ 1.

This implies that the exponent of p in a0a1....ak−1 is at most

l−1
∑

i=1

(

⌊

k

pi

⌋

+ 1) (10)

The argument is the same as in Legendre’s thoerem the difference here is that the sum stops at i = l− 1,
since the a′js contain no l-th powers. Extracting vl from equation (8) we have

vl =
a0a1....ak−1u

l

k!

Knowing that the exponent of a fraction is the difference of exponents (a
m

an = am−n) we have the following
estimation for the exponent of vl

exp(vl) =

l−1
∑

i=1

(

⌊

k

pi

⌋

+ 1)−
∑

i≥1

⌊

k

pi

⌋

=

l−1
∑

i=1

⌊

k

pi

⌋

−
∑

i≥1

⌊

k

pi

⌋

+

l−1
∑

i=1

1 ≤ l − 1 (11)

which is a contradiction to the fact that vl has exponent l. So our assumption that v 6= 1 is wrong. So
v = 1 and therefore u = 1. So we can write k! = a0a1 . . . ak−1. Indeed, since k ≥ 4 one of the a′is must
be equal to 4, i.e ai = 4 = 22 = 2l, which is a contradiction to the fact that that a′is contain no squares.
This suffices to settle the case l = 2. So we now assume that l ≥ 3

2.4 Step 4

Since k ≥ 4 and k! = a0a1.....ak − 1 then for some i1, i2, i3 we have ai1 = 1, ai2 = 2, ai3 = 4, that is

n− i1 = ai1m
l
1 = ml

1

n− i2 = ai2m
l
2 = 2ml

2

n− i3 = ai3m
l
3 = 4ml

3
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We claim that (n− i2)
2 6= (n− i1)(n− i3). Assume the opposite that, (n− i2)

2 = (n− i1)(n− i3) and let

n− i2 = b

n− i1 = b− x

n− i3 = b+ y

where 0 < |x|, |y| < k. Hence we have

b2 = (b− x)(b + y) =⇒ (y − x)b = xy

where x = y is not possible because in the contrary we would have

b2 = (b− x)(b + y) = (b − x)(b + x) = b2 − x2 =⇒ x2 = 0

which is not possible because |x| > 0. By part (1)

|xy| = b|y − x| ≥ b > n − k ≥ k2 ≥ (k − 1)2 ≥ |xy|, which is incorrect. Therefore our assumption
(n − i2)

2 = (n − i1)(n − i3) is incorrect. That means (2 · ml
2)

2 6= ml
1 · 4 · ml

3. Dividing by 4 we
have, (ml

2) 6= ml
1m

l
3 =⇒ m2

2 6= m1m3. Without losing generality we assume m2
2 > m1m3 (otherwise

m2
2 < m1m3) so we have =⇒ m2

2 ≥ m1m3 + 1.

Using the fact that n2 − (n− k + 1)2 = 2(k − 1)n− (k − 1)2 we write

2(k − 1)n > 2(k − 1)n− (k − 1)2

= n2 − (n− k + 1)2

> (n− i2)
2 − (n− i1)(n− i3)

= (2ml
2)

2 − 4(m1m3)
l

= 4[m2l
2 − (m1m3)

l]

≥ 4[(m1m3 + 1)l − (m1m3)
l]

≥ 4lml−1
1 ml−1

3

Multiplying both sides by m1m3 we have,

2(k − 1)nm1m3 > 4lml
1m

l
3 = l(n− i1)(n− i3) > l(n− k + 1)2 (12)

Plugging l ≥ 3 at equation (1) we get

n > kl ≥ k3 > 6k =⇒ k <
n

6
(13)

Having the above observation we keep estimating the right side of inequation (12)

l(n− k + 1)2 > 3(n−
n

6
)2 > 2n2 (14)

Combination of (12) and (14) yieds

2(k − 1)n ·m1 ·m3 > l(n− k + 1)2 > 2n2

by dividing with 2n both sides we have

(k − 1)m1m3 > n (15)

Observe next that
n− i = aim

l
i =⇒ n > aim

l
i

taking l-th root of both sides we have

n1/2 > a
1/l
i mi
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So

mi ≤ n1/l ≤ n1/3 =⇒ m1m3 ≤ n1/3 · n1/3 = n2/3

And we obtain
m1m3 ≤ n2/3 (16)

Multiplying by k both sides of (16) and using (15) we obtain

kn2/3 ≥ km1m3 > (k − 1)m1m3 > n,

by taking third power and dividing with n we have n < k3 which is contradiction to equation to (12).

Which contradicts n ≥ k3. Therefore our assumption that
(

n
k

)

= ml for l ≥ 3 is wrong, so there is no

solution to
(

n
k

)

= ml for l ≥ 3 and k ≥ 4.
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