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1 Introduction

This is a epilogue to Bertrand’s postulate on Binomial Coefficients.

Bertrands postulate.
For every n > 1 there is some prime number p with n < p < 2n.

In 1892 J.Sylvester strengthened Bertrands postulate in the following way;

[Ifn > 2k, then at least one of the numbers n,n — 1,...n — k + 1 has a prime divisor p greater than k. j

Note that for n = 2k we obtain precisely Bertrands postulate. In 1934, Erdos gave a elementary Book
Proof of Sylvesters result, running along the lines of his proof of Bertrands postulate.

He mentioned an equivalent way of stating Sylvesters theorem:
The binomial coefficient,

(1) =" 2o

always has a prime factor p > k.

.

With this observation we analyse when is (Z) equal to power m!.

We see that there are infinitely many solutions for k = [ = 2, i.e., there are infinitely many solutions of
2

(3) =m* 2

We observe that if (g) is a square, then so is ((2"51) ) To see this, let n(n—1) = 2m?. So by substitution

we get

(2n — 1)?((2n —1)* = 1) = (2n — 1)%4n(n — 1) = 2(2m(2n — 1))*.

(5 ) = iz -y

So we have:

Beginning with (g) = 62 we thus obtain many solutions. The next one is (229) = 2042. [by substituting
n=9 we have (2n —1)? = (2% 9 — 1) = 289 ]

For k = 3 it is known that (g) = m? has a unique solution with n = 50, m = 140. But for £ > 4 and
I > 2 we do not have any further solutions. Erdos proved this by the following argument:



2 Theorem

[ The Equation (Z) =m! has no integer solutions with [ > 2 and 4 < k < (n — 4).

Proof. We may assume n > 2k since (}) = (,,",). If the theorem is false then it follows that (}) = m!

This proof by contradiction proceeds in the below four steps.

2.1 Step1

By Sylvester’s theorem, (Z) has a prime factor p > k of . We have that (Z) = m! which can be written
as

is divisible by p. Since p > k,then p can’t be a divisor of the denominator k(k — 1).....1. Which implies
that the numerator n(n — 1).....(n — k + 1) is indeed divisible by p. So we have

Only one of n — i ! p', since [ > 2 we make the following observation

n > p' > k! > k? (1)

2.2 Step 2
We rewrite the (n — j) factors of the numerator in the form:
(n—3) = a;m; (2)

Where 0 < j < k —1 and a; is not divisible by any I-th power. By (Step 1) we know that a; has only

prime divisors less than or equal to k. We want to show a; # a; when ¢ # j. We assume the opposite,

that there exist ¢, j such that a; = a; and i # j, we can assume i < j (otherwise j > ¢) .Then we have
1<j = n—i>n—j

l

l
= a;m; > a;m;

= mé>m§- = m; >m; = m; >m;+1

On the other hand:
(0<ij<k-landi<j) = k>j—i=(n—14)—(n—j)=a;(mi—mh) >a;((m;+1)" —ml) (3)

Now :
L l l l
(mj + 1)t —ml = Z (k)mz-_k —m} = [(O)mé + (1))m§-_1 o 1] —mh > (1)ml_1 = lmé-_1
k=0

Plugging the above inequality in (3) we conclude

k> aj((mj+1) - mé) > lajmé-_l (4)



We know that [ > 2, so:

U/2)21 = (1-1)>(/2) = m' >m!?
Since j < k — 1 we can also write:
aglm™ > l(agmy)* = (n = )" > (n — (k- 1))"/?
which leads to
Uagmy)? 2 U((n — (k —1))'/?) (5)

From our assumption, n > 2k = k< (n/2) = n—k+1>n—-n/2+1=n/2+ 1. Furthermore:

(n—(k=1)V%) > (n/2+ D) = U((n— (k= 1))"/*)) > U((n/2+1)'/?) (6)

And since [ > 2 we have
l((n/2 + 1)1/2) > l(n/2)1/2 — (l2/2)1/2n1/2 — 7’Ll/2
Therefore we can say
I((n/2 4+ 1)!/?) > nl/? (7)
Now combining equations 4, 5 , 6 and 7 we get:
k> lajmé_l
> (agmy)'? = (n— (k= 1))"/?
> pl/2

which is a contradiction to n > k2, so our assumption that there exist 4, j such that a; = a; and i # j is
wrong and therefore a; # a; whenever ¢ # j i.e, a;’s are all distinct.

2.3 Step 3

In this step we prove a;’s are the integers 1,2,....k in some order. Since we know that they all are distinct,
it suffices to prove that,

agaq....ax—1 divides k!

! we obtain,

Substituting n — 5 = ajmz-, from Equation 2, into the equation (Z) =m
n(n—1)...(n —k+1) = agmharmt....ax_1mi}
= (aoal....ak_l)(moml....mk_l)l
= klm!
Now cancelling common factors of mgms....mg_1 and m yields,

aopaq....ap_1ut = kW' (8)

where ged(u,v) = 1. We want to show that v = 1. If v # 1 then it has a prime factor p < k. Equation (8)
tells us that since ged(u,v) = 1 and u! cannot be divisible by p then aga...ax_; has to be divisible by p,
so p has to be less than or equal to k and therefore p appears somewhere in the product k! = k(k—1)...1.

By Legendre’s Theorem we know that the exponent of p in k! is

]

i>1



Since n(n—1)...(n—(k—1)) = agpas . . . ap_1(momy ... mx_1)" = k!m! then p also appears in the product
n(n—1)...(n—(k—1)). Next we estimate the exponent of p in this product. Let ¢ > 0 and let’s assume
that there are s multiples by < by < - -+ < bg of p’ among n, (n—1),...,(n— (k—1)) where 0 <i < k—1
and 0 < s <k,ieb;=s -pi, b1 =1 -pi. Furthermore we have

bs =b1 +bs — b1

=by+p'-s—p
=by+(s—1)p'
Since by < by < --- < by are multiples of p* among n, (n —1),...,(n — (k — 1)) we have
i k—1
(s=1)p'=bs—bi<n—(n-—k+1)=k—-1 = s=——+1
p
which implies
kE—1 k
P P

So for each i the number of multiples of p’ among n,...n — k + 1 and hence among the a’s is bounded

by Lﬂ Tl

This implies that the exponent of p in aga;....ax—1 is at most

Z:ZI(L?J +1) (10)

The argument is the same as in Legendre’s thoerem the difference here is that the sum stops at i =1 —1,
since the a}s contain no [-th powers. Extracting v' from equation (8) we have

l
1 apaq....ax—-1U
Vv =

N k!

Knowing that the exponent of a fraction is the difference of exponents (‘Z—: = a™™ ") we have the following
estimation for the exponent of v’

S 1T [ER LI T~ LS R

i>1 i=1 i>1

which is a contradiction to the fact that v! has exponent I. So our assumption that v # 1 is wrong. So
v =1 and therefore u = 1. So we can write k! = agay ...ap—1. Indeed, since k > 4 one of the a}s must
be equal to 4, i.e a; = 4 = 22 = 2!, which is a contradiction to the fact that that a}s contain no squares.
This suffices to settle the case [ = 2. So we now assume that [ > 3

2.4 Step 4

Since k > 4 and k! = apay.....a — 1 then for some i1, 42,43 we have a;, =1, a;, = 2,a;, = 4, that is
c_ I
n—1 = a;pmy =my

n—1is = aigmé = 2m12

n—iz = aigmlg = 4mé



We claim that (n —is)? # (n —i1)(n —i3). Assume the opposite that, (n —i2)? = (n —i1)(n —i3) and let
n—is=2~>
n—i1=b—=x
n—iz=b+y
where 0 < |z, |y| < k. Hence we have
b =0b-2)b+y) = (y—a)b=u1y
where x = y is not possible because in the contrary we would have
=0b-2)b+y)=0b—-2)b+2z)=0—2> = 22 =0
which is not possible because |z| > 0. By part (1)

lzy| = bly — 2| > b >n—k > k* > (k—1)? > |zy|, which is incorrect. Therefore our assumption

(n —i2)2 = (n — i1)(n — i) is incorrect. That means (2 - mb)? # m} -4 - mk. Dividing by 4 we

have, (m}) # mim}, == m2 # mym3. Without losing generality we assume m3 > mymgz (otherwise

m3 < mims) so we have = m3 > mimg + 1.

Using the fact that n? — (n — k +1)2 = 2(k — 1)n — (k — 1)? we write

2(k —)n > 2(k — )n — (k — 1)
=n?—(n—k+1)?
> (n —i2)% — (n —i1)(n —i3)
= (2mb)? — 4(myms)!
= 4[m3' — (mims)']
> 4[(myms 4+ 1)! — (myims)!
> éllvnll_lmg_1

Multiplying both sides by mms we have,

2(k — D)nmyma > dlmbmk = 1(n —i1)(n —i3) > I(n — k +1)? (12)
Plugging [ > 3 at equation (1) we get
n>klzk3>6k:>k:<% (13)
Having the above observation we keep estimating the right side of inequation (12)

In—k+1)2>3(n— %)2 > 92 (14)

Combination of (12) and (14) yieds

2k — Dn-my-ms > l(n—k+1)* > 2n?

by dividing with 2n both sides we have

(k—1)mimz >n (15)

Observe next that
n—i:aimli = n>aimli
taking [-th root of both sides we have

1/1
n'/? > ai/ m;



So

m; < nt/t < nl/3 = mims < n'/3.n
And we obtain
myms < n?/3 (16)

Multiplying by k both sides of (16) and using (15) we obtain

kn?/? > kmyms > (k — 1)myims > n,

by taking third power and dividing with n we have n < k% which is contradiction to equation to (12).

Which contradicts n > k3. Therefore our assumption that (Z) = m! for | > 3 is wrong, so there is no
solution to (’,:) =m! for I >3 and k > 4.
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