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Introduction

Discuss the concept of supervised learning in multi layer
perceptrons based on gradient descent technique.

We introduce Backpropagation which is one of the most popular
training algorithms for multilayer perceptrons.

Some problems and drawbacks of backpropagation learning
procedure.

Over the last years many improvement strategies have been
developed to speed up backpropagation. We look at some of many
different speedup techniques.
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Preliminaries
Multi Layer Perceptrons

Multi layer perceptron (Werbos 1974, Rumelhart, McClelland, Hinton
1986), is a feed-forward network, consisting of neurons connected by
weighted links.
It is a finite acyclic graph. The nodes are neurons with sigmoid
activation.

Units are organised namely, an input layer, hidden layer/s and an
output layer.
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Preliminaries
Multi Layer Perceptrons

Nodes that are no target of any connection are called input
neurons. A MLP that should be applied to input patterns of
dimension n must have n input neurons, one for each dimension.

Nodes that are no source of any connection are called output
neurons. A MLP can have more than one output neuron. The
number of output neurons depends on the way the target values
(desired values) of the training patterns are described.

All nodes that are neither input neurons nor output neurons are
called hidden neurons
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Preliminaries
Multi Layer Perceptrons

Variables for calculation.

Succ(i) and Pred(i) is the set of all neurons j for which connection
i→ j and j → i exists respectively.

The weight of the connection j → i is wij .

All hidden and output neurons have a bias weight named as θi for
neuron i.

Hidden and output neurons have some variable net i (network
input)and si as its (activation/output).
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Preliminaries
Multi Layer Perceptrons

Applying ~x to the MLP,

for each input neuron the respective element of the input pattern
is presented as, si ← xi.

for all hidden and output neurons i, calculate net i and si as :
net i =

∑
j∈pred(i) sjwij − θi

The activation of unit i, si is computed by passing the net input
through a non-linear activation function, usually sigmoid logistic
function.

si = flog(neti) =
1

1 + e−neti

A nice property of this function is its easily computable derivative.

∂si
∂neti

= f ′log(neti) = si ∗ (1− si)
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Preliminaries
Supervised Learning

Objective: To tune the weights in the network such that the network
performs a desired mapping of input to output activations.

The mapping is given by a set, the so called pattern set P.

Each pattern pair p, consist of an input activation vector xp and
target activation vector tp.

After training the weights, when an input activation xp is
presented, the resulting output vector sp should equal the target
tp.

The distance between the target and the actual output vector, is
measured by the following cost function E :.

E :=
1

2

∑
p∈P

∑
n

(tpn − spn)2
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Preliminaries
Supervised Learning

Learning means: calculating weights for which the error E becomes
minimal.

The weights in the network are changed along a search direction d(t),

∆w(t) = ε ∗ d(t)

where the learning rate ε, scales the size of the weight step.

To determine the search direction d(t), we use the first order
derivative, the gradient

∆E =
∂E

∂w
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Preliminaries
Back Propagation algorithm

The Back propagation algorithm, performs successive computations of
∆E, by propagating the error back from output towards the input
layer.
Idea: Compute the partial derivative ∂E/∂wij for each weight in the
network, by repeatedly applying the chain rule:

∂E

∂wij
=
∂E

∂si

∂si
∂wij

where,

∂si
∂wij

=
∂si
∂neti

∂neti
∂wij

= f ′log(neti)sj
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Preliminaries
Back Propagation algorithm

To compute ∂E/∂si, we look at the two cases:

If i is an output unit then,

∂E

∂si
=

1

2

∂(ti − si)2

∂si
= −(ti − si)

If i is not an output unit, then we apply the chain rule again;

∂E

∂si
=

∑
k∈succ(i)

∂E

∂sk

∂sk
∂si

=
∑

k∈succ(i)

∂E

∂sk

∂sk
∂netk

∂netk
∂si

=
∑

k∈succ(i)

∂E

∂sk
f ′log(netk)wki
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Preliminaries
Gradient Descent

The next step in backpropagation is to compute the weight update.

Weight update is a scaled step in the opposite direction of the
gradient.

The negative derivative is multiplied by a constant value, the
learning-rate, ε.

We call this minimization technique as gradient descent:

∆wij(t) = −ε ∗ ∂E

∂wij
(t)
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Preliminaries
Gradient Descent

Choosing the learning rate.
A good choice depends on the error-function.
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Preliminaries
Gradient Descent - Problems

The weight step is dependent on both the learning parameter and
the size of the partial derivative ∂E/∂wij .
Flat spots and steep valleys:
We need larger ε in ~u to jump over the flat area but need smaller ε
in ~v to meet the minimum.

Zig-zagging In higher dimensions: ε is not appropriate for all
dimensions.
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Preliminaries
Gradient Descent - Problems

Finding the right ε is annoying. Approaching the minimum is time
consuming.

Heuristics to overcome problems of gradient descent:

Gradient descent with momentum

Individual learning rates for each dimension

Adaptive learning rates

Venkatramani Rajgopal Advanced Supervised learning in multi-layer perceptrons - From backpropagation to adaptive learning algorithm14 December 2016 15 / 40



Preliminaries
Gradient Descent with momentum

To make learning more stable, one of the idea was to introduce a
momentum term, µ :

∆wij = −ε ∂E
∂wij

(t) + µ∆wij(t− 1)

It scales the influence of previous weight step on the current one.

Usually, when using gradient descent with momentum, the learning
rate should be decreased to avoid unstable learning.
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Preliminaries
Gradient Descent with momentum

Advantages of momentum

Smoothes zig-zagging

Accelerates learning at flat spots

Slows down when signs of partial derivatives change
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Preliminaries
Learning by pattern vs learning by epoch

Two methods for computing weight update.

In learning by pattern method a weight update is performed after
computation of respective gradient. This is known as online
learning.

Learning by epoch first sums the gradient information for the
whole pattern set, then performs the weight update. Known as
batch learning.
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Global Adaptive Techniques
Steepest Descent

Adaptive learning rate. Idea:

Make learning rate individual for each dimension and adaptive

If signs of partial derivative change, reduce learning rate

If signs of partial derivative don’t change, increase learning rate

Algorithms, that use the global knowledge of the entire network, like
direction of the overall weight update are referred as global techniques.
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Global Adaptive Techniques
Steepest Descent

The steepest descent tries to take an optimal weight step by finding an
individual scaling parameter ε(t), each iteration.

To find such a parameter, is regarded as line search.

A small initial learning rate is used, which is increased until the
error function no longer decreases.

Drawback: For every iteration, the evaluation of the error function E is
required, which is a costly propagation, to compute the new value of E.
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Global Adaptive Techniques
Steepest Descent

While applying Steepest Descent, it can be shown that two successive
weight steps are perpendicular.

∂(w(t+ 1))

∂ε
= 0

Then,

∂(w(t+ 1))

∂ε
=
∂(w(t+ 1))

∂w(t+ 1)

∂(w(t) + ε ∗ ∂(t))

∂ε

= ∇E(t+ 1)d(t)

= 0 (1)

Means that the new gradient ∇E(t+ 1) that determines the new
direction d(t+ 1) and old direction d(t) are perpendicular.
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Global Adaptive Techniques
Conjugate gradient method

Comparison of the convergence of gradient descent with optimal step
(in green) and conjugate vector (in red).
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Global Adaptive Techniques
Conjugate gradient method

The condition from Equation (1) also holds good for the weight step,

d(t)∇E(t+ 2) = 0

and it can be shown that above is fulfilled if,

d(t)H d(t+ 1) = 0 (2)

where H denotes that Hessian Matrix, containing second order
derivatives of the weights. Two vectors fulfilling the above are called

conjugate.
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Global Adaptive Techniques
Conjugate gradient method

To determine the new search direction d(t+ 1) that fulfills equation (2)
we set,

d(t+ 1) = −∇E(t+ 1) + β ∗ d(t)

This means that the new search direction is a combination of the
direction indicated by the gradient and the previous search direction.

The parameter β is computed using the Polak-Ribiere rule:

β =
(∇E(t+ 1)−∇E(t))∇E(t+ 1)

(∇E(t))2
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Local adaptive techniques
Delta bar delta rule

R Jacobs, proposed the weight specific learning rates. He determined
the evolution of learning rates according to the estimation of the shape
of the error function.

Based on the observed behaviour of the partial derivatives during
two successive weight steps.

If derivatives have same sign, the learning rate is linearly increased
by a small constant.

On the other hand, a change in sign of the two derivatives
indicates that the procedure has over shot a local minimum. (i.e
the the previous weight step was too large).

As a consequence, the learning rate is decreased.
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Local adaptive techniques
Delta bar delta rule

Which is,

ε
(t)
ij =


κ+ ε

(t−1)
ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
> 0

η− ∗ ε(t−1)ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
< 0

ε
(t−1)
ij , else

with 0 < η− < 1.

Weight update is the same as with backpropagation learning, except
that, the fixed learning rate ε is replaced by the weight specific,
dynamic learning rate εij(t)

∆wij(t) = −εij(t)
∂E

∂wij
(t) + µ∆wij(t− 1)
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Local adaptive techniques
SuperSAB

Based on the idea of sign-dependent learning rate adoption.

Change here, is to increase the learning rate exponentially instead
of linearly like in Delta Bar Delta rule.

ε
(t)
ij =


η+ + ε

(t−1)
ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
> 0

η− ∗ ε(t−1)ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
< 0

ε
(t−1)
ij , else

with 0 < η− < 1 < η+.

Also, in case of a change in sign of two successive derivatives, the
previous weight step is reverted.
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Local adaptive techniques
SuperSAB

Advantage:
Fast convergence. Often faster than ordinary gradient descent.

Disadvantage:
Determination of large number of parameters to achieve good
convergence.
Initial learning rate, the momentum factor and the increase (decrease)
factor.

∆wij(t) = −εij(t)
∂E

∂wij
(t) + µ∆wij(t− 1)
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Local adaptive techniques
Quickprop

Local adaptive techniques are based on weight specific information,
such as the behaviour of the partial derivative.

Idea: To find a solution in a short time, taking the largest step
possible, without overshooting the solution.

Here we make explicit use of the second derivative of the error
with respect to each weight.

It is a second-order method, based loosely on Newton’s method.

Everything proceeds as in standard back-propagation, but for each
weight, keep a copy of ∂E/∂w(t− 1), the error derivative
computed during the previous training epoch, along with the
difference between the current and previous values of this weight.
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Quickprop

Assumption

Local error function for each weight is assumed to be a ’Parabalo
whose arms are wide open’.

For each weight, independently, we use the previous and current error
slopes and the weight-change between the points at which these slopes
were measured to determine a parabola; we then jump directly to the
minimum point of this parabola.

So the update rule we have;

∆wij(t) =

∂E
∂wij

(t)

∂E
∂wij

(t− 1)− ∂E
∂wij(t)

∆w(t− 1) (3)
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were measured to determine a parabola; we then jump directly to the
minimum point of this parabola.

So the update rule we have;

∆wij(t) =

∂E
∂wij

(t)

∂E
∂wij

(t− 1)− ∂E
∂wij(t)

∆w(t− 1) (3)
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Quickprop

The update rule is equivalent to Newtons approximation method.

The objective is to find a minimum of f(x)

Newtons method computes updates of x according to ;

x(t+ 1) = x(t) + ∆x(t)

where,

∆x(t) = − f ′(x(t))
f”(x(t))

Approximation using the first order derivatives:

f”(x(t)) =
f ′(x(t))− f ′(x(t− 1))

x(t)− x(t− 1)
=
f ′(x(t))− f ′(x(t− 1))

∆x(t− 1)
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Quickprop

By substitution we have,

∆x(t) =
f ′(x(t))

f ′(x(t− 1))− f ′x(t)
∆x(t− 1) (4)

which corresponds to the update rule ∆wij(t). (Equation (3))

The update rule is composed of ∆wij(t) and a small gradient step.

To avoid large weight steps, coming from small denominator, the
present weight step is restricted to at most ν times as large as the
previous step.

The Quickprop thus has two parameters.
Learning rate ε for gradient descent and a second parameter ν
which limits the step size.
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Rprop - Resilient backpropagation

The basic idea here is to eliminate the harmful influence of the size of
the partial derivative on the weight step.

To achieve this, we introduce for each weight its individual update
value ∆ij , which solely determines the size of the weight update.

∆
(t)
ij =


η+ + ∆

(t−1)
ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
> 0

η− ∗∆
(t−1)
ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
< 0

∆
(t−1)
ij , else

where 0 < η− < 1 < η+.
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Rprop - Resilient backpropagation

Adaptation rule:

Every time the partial derivative of the corresponding weight wij

changes its sign, which indicates that the last update was too big
and the algorithm has jumped over a local minimum, the
update-value ∆ij is decreased by a factor of η−.

If the derivative retains its sign, the update-value is slightly
increased in order to accelerate convergence in shallow regions.
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Rprop - Resilient backpropagation

Once the update-value for each weight is adapted, the weight-update
itself follows a very simple rule:

If the derivative is positive (ie if we have an increasing error), the
weight is decreased by its update-value.

If the derivative is negative, the update-value is added.

∆w
(t)
ij =


−∆

(t)
ij , if ∂E

∂wij

(t)
> 0

+∆
(t)
ij , if ∂E

∂wij

(t)
< 0

0 , else
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Rprop - Resilient backpropagation

Exception: If the partial derivative changes sign, i.e. the previous step
was too large and the minimum was missed, the previous
weight-update is reverted:

∆w
(t)
ij = −∆w

(t−1)
ij , if

∂E(t−1)

∂wij
∗ ∂E

(t)

∂wij
< 0
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Rprop - Resilient backpropagation

Parameters.

Beginning: all update values ∆ij are set to an initial value of ∆0.

The second paramater is the upper bound ∆max. This is set
inorder to prevent the weights from becoming too large, max
weight step determined by the size of the update value is limited.

The increase and decrease factors are fixed to η+ = 1.2 and
η− = 0.5.
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Rprop - Resilient backpropagation

Main advantages of RPROP - For many problems no choice of
parameters is needed at all to obtain optimal convergence.

To summarize,

Rprop is the direct adaptation of the weight update values ∆ij .

It modifies the size of the weight step directly by introducing a
concept of resilient update-values.

As a result adaptation effort is not blurred by unforeseeable
gradient behaviour.
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Test Results

Figure: Results for different learning procedures

Figure: Sensitivity of different learning procedures to choice of learning
parameter
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